

Haltbar machen

Helga VOGLHUBER PH-Kärnten

Inhalt

1.	Das Salz aus dem Stein - Heft "Salz"	Nr. 17/2015	3
2.	Das Schwimmende Wasser - Heft "Wasser"	Nr. 4/2012	4
3.	Bunter Zucker – Heft "Farben"	Nr. 1/2011	е
4.	Zucker und Wasser – Zucker und Öl: Heft "Wasser"	Nr.4/2012	7
5.	Butter schütteln – Heft "Was wir essen"	Nr. 14/2014	9
6.	Mit roten Tulpenblättern malen – Heft "Keimen und wachsen"	Nr.07/2013	10
7.	Säuren und Salze machen haltbar – Heft "Haltbar machen"	Nr.24/2017	11
8.	Wie kann ein Flugzeug fliegen? – Heft "Gleiten und Fliegen"	Nr. 12/2014	12
9.	Klänge und Geräusche – Heft Akustik	Nr.8/2013	13

Liebe Kolleginnen und Kollegen!

Volksschulkinder sind geborene Forscher/innen. Sie sind neugierig, beobachten und erforschen ihre Umwelt mit großer Begeisterung, sie wollen so manches aus der Welt der Naturwissenschaften wissen und erfahren. Aber vor allem, sie wollen ausprobieren, sie wollen experimentieren. Diesen Wünschen und Ansprüchen der Volksschulkinder kommt die Zeitschrift "Molecool-Lino" vom Verband der Chemielehrer/innen Österreichs (VCÖ) nach. Neben den zahlreichen Experimenten zu bestimmten Themenbereichen bietet "Molecool-Lino" dazu Wissenswertes kindgerecht aufgearbeitet, weiters Geschichten über berühmte Naturwissenschafter/innen sowie Bastelanleitungen und Rätsel, bei welchen die Kinder spielerisch ihr erworbenes Wissen aus den Naturwissenschaften unter Beweis stellen können.

Die Zeitschrift "Molecool-Lino" erscheint 4 Mal im Schuljahr und kostet € 10. Die Finanzierung kann auch über die Schulbuchaktion erfolgen.

In diesen Unterlagen ist ein Ausschnitt aller bisher erschienenen 26 Ausgaben von Molecool-Lino enthalten. Die Experimente umfassen die Chemie, Physik und Biologie und sind mit weiterführenden Experimenten und Erklärungen versehen. Diese drei Naturwissenschaften besitzen ihre eigenen Wissenschaftsbereiche, jedoch gibt es zwischen ihnen viele fachliche Überschneidungen. Jede dieser Wissenschaften benötigt die andere, um gut forschen zu können.

Die Chemie ist jene Wissenschaft, die die "Dinge" um uns beschreibt aber auch wie man diese "Dinge" in andere "Dinge" umbauen kann. Diese "Dinge", die uns umgeben, nennt der Chemiker /die Chemikerin "Stoffe". Darunter meint er/sie nicht nur die Stoffe für unsere Bekleidung, sondern alle Substanzen um uns herum, auch wenn wir sie nicht immer sehen, spüren oder riechen können. Alle Stoffe haben ganz bestimmte Eigenschaften, wie Masse, Schmelz- und Siedepunkte, Leitfähigkeit für Strom und Wärme, Geruch, Löslichkeit, Härte, Farbe und Kristallform.

Die Physik beschäftigt sich mit Stoffen und Körpern, um zu ergründen, wie sich diese bei Kraft- oder Wärmeeinwirkung verhalten, z.B. wie verläuft der Ballwurf oder warum steigt warme Luft hoch? Was passiert, wenn Licht auf einen Spiegel oder einen Wassertropfen fällt? Das sind auch Fragen für die Physik.

Die Biologie ist jene Wissenschaft, die das Leben einschließlich der verschiedenen Lebenssysteme auf unserer Erde beschreibt und ständig nach neuen Antworten auf Fragen darauf sucht.

Die angeführten Experimente sind ohne Vorkenntnisse durchführbar und sollten keine Gefährdung verursachen. Anbei eine kleine "Laborregel" und viel Spaß beim Experimentieren!

- Nicht essen, entferne Jause und Getränke
- Wenn du lange Haare haben solltest, so binde diese zusammen
- Trage keine Kleidung, die dich beim Experimentieren behindern könnte,
 z.B. lange Ärmel, Schal, lange Kette
- Setzte eine Schutzbrille auf
- Arbeite nie mit Feuer (Zünder, Kerze) OHNE die Anwesenheit eines Erwachsenen (Lehrer/in, Eltern)
- Wenn du mit dem Experiment fertig bist, räume deinen Platz auf und säubere ihn

1. Das Salz aus dem Stein - Heft "Salz"

Nr. 17/2015

Ergänzender Tipp: Statt des Löffels eignet sich auch die Aluschale vom Teelicht zum Abdampfen. Als Halterung eine Holzwäscheklammer verwenden.

Ergänzendes Experiment 1: "Salzwassertropfen und Süßwassertropfen"

Material: 2 Gläser, Salz, Wasser, Kunststofflöffel, 2 Pipetten

Durchführung: 2 Gläser mit Wasser zu ¾ füllen. In einem Glas 4-5 Löffel Salz auflösen und umrühren (die Lösung soll stark salzhaltig sein). Nun mit einer Pipette das Salzwasser vorsichtig ins Süßwasser tropfen und von der Seite das Geschehen im Glas beobachten. Danach mit einer neuen Pipette das Salzwasser ins Süßwasser tropfen und wieder gut beobachten.

Beobachtung: Der Salzwassertropfen sinkt im Süßwasser, der Süßwassertropfen fällt zwar ins Salzwasser, steigt aber dann wieder hoch.

Erklärung: Der Salzwassertropfen ist schwerer, weil er gelöstes Salz enthält und versinkt im Süßwasser. Das schwere Salzwasser im Glas verhindert das Einsinken des Wassertropfens.

Ergänzendes Forscherexperiment 2: Versuche ein Lightgetränk und ein zuckerhaltiges Getränk wie im Experiment oben (durch Überschichtung) zu untersuchen.

Abb.: 1 Cola Zero schwimmt auf stark zuckerhaltigem Getränk

Abb.: 2 Wasser schwimmt auf Himbeersirup

Ergänzendes Experiment 3: "Die schwebende Tomate"

Material: 1 Becher oder Glas, Salz, Wasser, Kunststofflöffel, Kirschtomate

Durchführung: Den Becher oder das Glas mit Wasser füllen. Bevor du die Tomate ins Wasser wirfst, überlege was mit ihr passiert. Die Tomate sinkt □ die Tomate schwimmt □ die Tomate schwebt □ Jetzt die Tomate ins Wasser werfen. Hattest du recht? Ja □ nein □

Jetzt die Tomate zum Schweben bringen, indem vorsichtig Salz hinzugefügt wird.

Frage: Was muss gemacht werden, damit die Tomate schwimmt? Was muss man hinzugefügt werden, damit die Tomate wieder sinkt?

Beobachtung: Die Tomate sinkt. Durch Salzzugabe beginnt sie hochzusteigen und schwimmt letztendlich **Erklärung:** Die Tomate ist schwerer als Wasser. Durch Salzzugabe wird das Wasser schwerer und hebt die Tomate in die Höhe. Schwebt die Tomate, so ist sie gleich schwer wie das Salzwasser. Fügt man mehr Salz dazu, so hebt das Salzwasser die Tomate in die Höhe, sie schwimmt.

Ergänzendes Forscherexperiment 4: "Welches Obst, welches Gemüse sinkt bzw. schwimmt?" Untersucht werden: Apfel, Zitrone, Weintraube, Kiwi, Orange, Birne, Pomelo, geschälte Zitrone etc. Stelle dazu Vermutungen auf! Wer schwimmt, wer geht unter? Wer schwebt?

Versuche eine Begründung für das "Forschungsergebnis zu finden?

Abb.: 3 Tomate in einer Salzlösung Abb.: 4+4 Manche Früchte schwimmen, manche sinken

Ergänzendes Experiment 1: "Bunte Bilder mit Zuckerwürfel malen"

Material: 1 weißer Teller oder Kunststofftasse, 2 Zuckerwürfel, Wasser, bunte Filzstifte

Durchführung: Den Teller oder Kunststofftasse bodenbedeckt mit Wasser füllen. Jeden Zuckerwürfel auf einer Seite mit 2 Farben (oder 3 Farben) bemalen. Gleichzeitig die bemalten Zuckerwürfel mit der bemalten Seite nach unten ins Wasser am Teller legen.

Beobachtung: Sofort löst sich der Zuckerwürfel auf, mit den gelösten Zuckerteilchen wandern die Farbteilchen mit und bilden ein sehr schönes Farbmuster.

Ergänzendes Experiment 1: "Karottenraspel entscheiden sich für Wasser oder Öl?"

Material: Küchenreibe, Teller, 1 kleines Glas, Karotte, Wasser, Speiseöl

Durchführung: Karotte aufreiben und ein paar Raspeln in das kleine Glas geben. Mit 1-2 mL Wasser versetzen und schütteln. Jetzt 1-2 mL Speiseöl dazugeben und schütteln.

Beobachtung: Das Wasser bleibt nach dem Schütteln farblos, das Speiseöl hingegen wird gelblich bis orange

Erklärung: Der Farbstoff der Karotte (Beta-Carotin oder Provitamin A) löst sich sehr gut im Speiseöl, nicht aber im Wasser.

Ergänzendes Experiment 2: "Die Reise des Tintentropfens durch Feindesland"

Material: 1 kleines Glas, Wasser, Speiseöl, Tinte, Plastikpipette (oder Tintenpatrone)

Durchführung: Im kleinen Glas das Wasser mit Speiseöl überschichten. Jetzt mit der Pipette etwas Tinte hochsaugen und langsam tropfenweise die Tinte auf das Öl tropfen (oder die Tinte aus der Patrone ins Öl drücken)

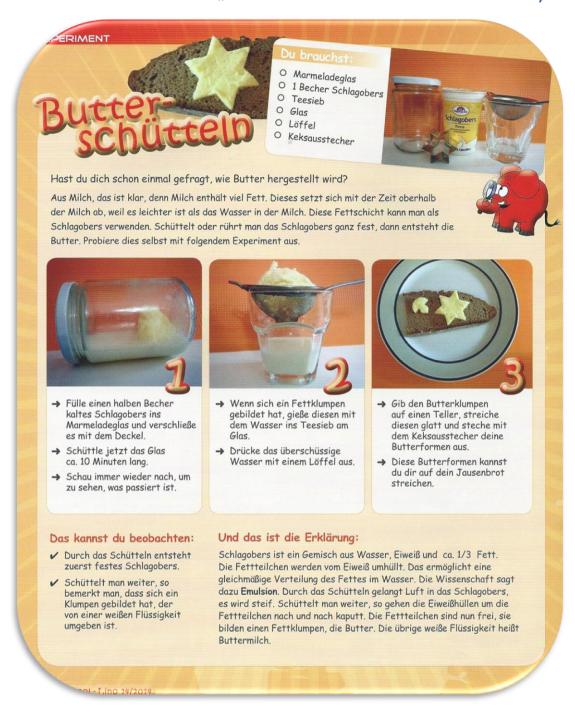
Beobachtung: Die Tinte bildet im Speiseöl dicke blaue Kugeln, die langsam die Ölschicht durchwandern und schließlich beim Erreichen der Wasserschicht sich darin auflösen. Es entsteht blau gefärbtes Wasser unter der Ölschicht.

Erklärung: Tinte besteht aus Wasser, das sich nicht mit dem Öl "verträgt". Diese beiden Flüssigkeiten können sich aufgrund ihrer unterschiedlichen Teilchenbauweise nicht mischen. Deshalb bildet die Tinte im Öl eine Kugel, weil sich dabei die beiden flüssigen Stoffe am wenigsten berühren. Die Tinte ist schwerer als das Öl und sinkt deshalb langsam nach unten ins Wasser. Dort löst sie sich auf.

Abb.: 6 Die Reise des Tintentropfens durch das Öl

Ergänzendes Experiment 3: Wo löst sich die Brausetablette besser? Im Wasser oder im Öl?

Material: Gemisch vom vorigen Experiment 2, Brausetablette


Durchführung: Das Gemisch vom Experiment 2 bereitstellen. Dazu ein kleines! Stück der Brausetablette hineingeben. Dies kann wiederholt werden.

Beobachtung: Die Brausetablette löst sich, Gasblasen steigen hoch und nehmen blaue Wassertropfen in die Ölphase mit. Das Gas entweicht und die kugelförmigen blauen Wassertropfen kehren in die Wasserphase zurück. Dies erfolgt so lange, bis die gesamte Brausetablette aufgelöst ist.

Erklärung: Die Brausetablette löst sich in der Wasserphase, dabei entsteht Kohlendioxid. Dieses steigt hoch und nimmt Wasser in die Ölphase mit. Da Wasser sich nicht im Öl löst, bildet es eine große Wasserkugel in der Ölphase und wird bis zur Oberfläche mitgenommen. Dort entweicht das Kohlendioxid, das Wasser bleibt als Kugel zurück und fällt langsam wieder in die Wasserphase zurück.

Abb.: 7 Lavalampe

Ergänzendes Experiment 1:

Material: Marmeladeglas, Schlagobers, Teesieb, Glas, Karotte, Reibe, Teller

Durchführung: Wie oben vorgehen. Danach einen Teelöffel einer geraspelten Karotte dazu geben und nochmals schütteln

Beobachtung: Die Butter ist gelb gefärbt, die Buttermilch zeigt zarte Gelbtönung.

Erklärung: Der im Fett lösliche Karottenfarbstoff färbt die Butter. In der Buttermilch sind noch Fettreste enthalten, die ebenfalls gefärbt werden.

(Bauern)Butter ist immer je nach Jahreszeit verschieden stark gelb gefärbt. Die Kühe nehmen beim Grasen unterschiedliche Pflanzen mit unterschiedlichen "Karottenfarbstoffen" (Provitamin A) auf, die in die Milch und somit auch in die Butter gelangen.

Gibt man die Karottenraspel vor dem Schütteln zur Sahne, so entsteht zwar auch Butter, die jedoch mit der Buttermilch emulgiert ist. Die Karotten enthalten Stoffe (Emulgatoren), die dies ermöglichen.

6. Mit roten Tulpenblättern malen - Heft "Keimen und wachsen"

7/2014

So geht's:

o Nimm ein kleines Stück Zeichenblatt oder Löschblatt (ca. 15 x 10 cm) und reibe es fest mit den roten Tulpenblättern ein, bis das Blatt ganz mit "Tulpenfarbe" eingefärbt

- o Malst du mit Zitronensaft, so erscheint der Tulpenfarbstoff rot.
- o Malst du mit Seife, so erscheint der Tulpenfarbstoff grün. Je nach Tulpenart kann das Malen mit Seife auch ein Blau ergeben. Jetzt nimm deinen Tintenkiller, dann erscheint die Tulpenfarbe grün.

- o Zeichne jetzt mit Bleistift eine Tulpe oder auch eine andere Blume. Du kannst dazu auch eine Schablone verwenden.
- o Nimm jetzt ein Wattestäbchen, tauche dieses in Zitronensaft und male ein Blütenmuster.
- o Nimm jetzt ein anderes Wattestäbchen, befeuchte es und reibe an der Seife.
- Male jetzt damit den Stängel und die Blätter deiner Tulpe oder Blume.
- o Statt mit Seife kannst du auch mit deinem "Tintenkiller" malen,

Zum Schluss kannst du deine Tulpe ausschneiden.

ERKLÄRUNG:

Die roten Tulpenblätter, aber auch viele Blütenblätter anderer Blumen, enthalten einen Farbstoff, der seine Farbe ändert, wenn er mit einer Säure oder Lauge in Berührung kommt.

Bei unserem Experiment verwenden wir den Saft der Zitrone als Säure und die Seifenlösung als Lauge. In der Chemie nennt man solche Farbstoffe als "Anzeiger" für Säuren und Laugen. Statt "Anzeiger" sagt man in der Chemie Indikator.

TIPP für kleine Forscherinnen und Forscher!

Auch violette Tulpenblätter, rote und blaue Blüten anderer Blumenarten oder Rotkrautblätter sind zum Malen bestens geeignet. Probiere es einfach aus!

Und so kann z.B. ein Schmetterling mit Radieschenfarbe aussehen

Das Zeichenblatt mit einem Radieschen fest einreiben. Danach mit Zitronensaft, Seifenlösung und Tintenkiller ein schönes Schmetterlingsmuster malen.

EXPERIMENT

Die Farbe im Rockraut

- Schneidbrettchen
- Messer
- 0 Rührschüssel Sieb
- kleiner Topf
- Wasserkocher
- Gläser, Löffel 0
- Schutzbrille

- Rotkraut 0 0 Essig
- Waschsoda

7. Säuren und Salze machen haltbar - Heft "Haltbar machen"

RIMENT O Apfel O Schneidebret O Messer O Teelöffel O Zitronensäure (aus der Backabtei

Zitronensäure E 330; Vitamin C E 300

24/2017

Die Apfelspalten werden braun, weil durch das Anschneiden die Zellen zerstört werden und der Zellinhalt mit dem Sauerstoff der Luft in Berührung kommt. Dadurch werden bestimmte Stoffe (die Phenole) durch die Reaktion mit Sauerstoff braun. Diese Reaktion kann z.B. das Vitamin C oder Ascorbinsäure verhindern, weshalb die Apfelspalten weiß bleiben. Die Zitronensäure kann diese Bräunungsreaktion nur hinauszögern.

Der Zitronensaft enthält Vitamin C und Zitronensäure.

Im Sackerl Zitronensäure aus dem Supermarkt ist (meistens) neben der Zitronensäure auch etwas Vitamin C enthalten, damit man gut die Bräunung von Obst und Gemüse verhindern kann.

Schneide 4 Spalten aus dem Apfel und lege sie nebeneinander auf das Brett.

Streue Zitronensäure auf eine Apfelspalte, streue Vitamin C auf die zweite Spalte und streiche die dritte mit der Zitrone ein.

Lass die vierte zum Veraleich daneben liegen.

des Lebensmittel-Geschäftes)

O Vitamin C (aus der Drogerie)

Beobachte, was auf den du den Rest des Apfels aufisst! Hinweis: Wärme und Licht beschleunigen den Vorgang!

Tage beobachten

Erklärung:

- ✓ Viele natürliche Säuren werden in den Früchten gebildet, damit diese nicht faulen, bevor die Samen reif sind. Weißt du, wie unreife Früchte, Beeren usw. schmecken?
- ✓ Diese Möglichkeit verwendet auch die Lebensmittel-Industrie, um die Haltbarkeit zu verlängern.
- ✓ Vielen Lebensmitteln werden Zitronensäure oder Ascorbinsäure (anderer Name für Vitamin C) zugesetzt, damit sie länger haltbar bleiben.

RSCHUNGSAUFTRAG

Suche und finde auf verschiedenen Lebens Verpackungen die Codes E330 – steht für ure – und E300 für Ascorbinsa

Abb.: 5 Wursthaut gefüllt mit blauem Wasser befindet sich in konzentrierter Salzlösung

Abb.: 6 Das gefärbte Wasser wandert durch die Wursthaut in die Salzlösung

Abb.: 7 Die Wursthaut enthält im Inneren fast kein Wasser mehr. Die Salzlösung ist blau gefärbt.

Salz ist seit jeher wichtig, damit Lebensmittel

Noch heute machen wir einige unserer Nahrungsmittel mit Salz haltbar:

- ✓ Salzgurken
- ✓ Salzhering
- ✓ Wurst und Fleisch
- ✓ Suppengrün oder Kräuter in Salz

- O Wurstdarmhaut (vom Fleischer)
- O Salzwasser (gut salzen)
- O Schüssel
- O Spagat O Löffel

Starkes Einsalzen schützt Lebensmittel vor dem Verderben. Das Salz entzieht den Lebensmitteln das Wasser und ohne Wasser können Fäulnisbakterien und Schimmelpilze nicht leben

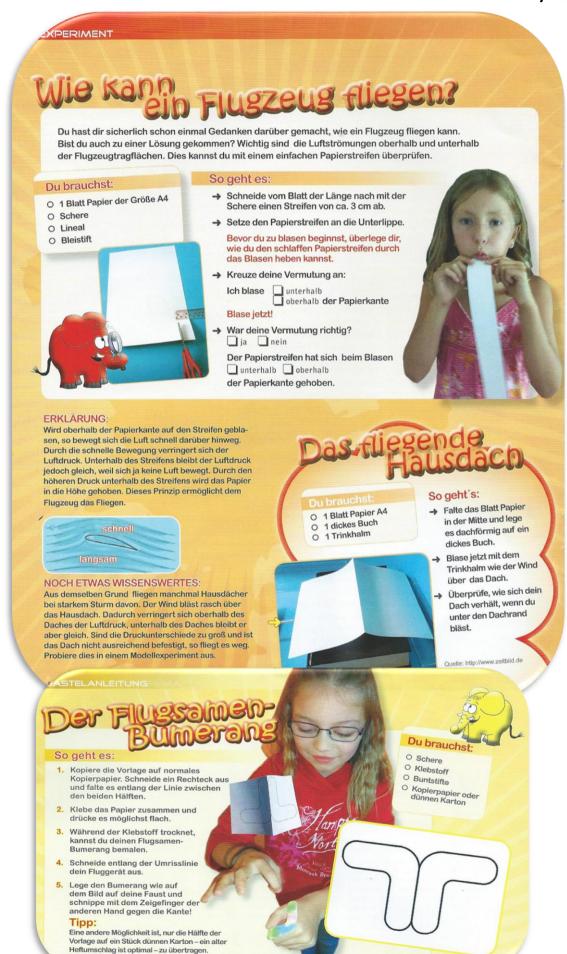
Bakterien sind mikroskopisch kleine, einzellige Lebewesen. Sie bestehen aus einer Hülle, die mit Wasser und einem komplizierten Innenleben gefüllt ist.

Kommen diese Bakterien nun in Berührung mit Salzwasser, so zieht das Salz das Wasser aus der Zelle Die Bakterienzelle schrumpft und trocknet aus. Für die Bakterien ist der Wasserverlust

Nicht nur das Dörren, sondern auch das Salzen entzieht allem Lebendigen Wasser und auf diesem Weg den Kleinstlebewesen eine wichtige Lebensgrundlage

Die mit Wasser gefüllte Wurstdarmhaut ist das Modell einer Bakterie. Du füllst sie prall voll mit Wasser und verschließt sie ganz fest.

Dann legst du die Modell-Bakterie in Salzwasser.


Wenn du genau hinsiehst, kannst du an feinen Schlieren sehen, wie das Wasser durch die Haut der Modell-Bakterie nach außen ins Salzwasser strömt.

Nach einigen Stunden ist die Modell-Bakterie schlapp und fast vertrocknet.

Die Wurstdarmhaut kann man mit Wasser füllen, ohne dass es hinausläuft. Aber trotzdem bleibt die Haut wasserdurchlässig wie die Bakterienhülle.

Quelle: https://www.salzwelten.at/de/wissen/konservieru

Quellenangaben:

Verschiedene Artikel aus der Zeitschrift "Molecool"; Bestellungen unter: http://www.vcoe.or.at/molecool/

Voglhuber, H.; Obst&Gemüse; Unterlagen für NAWImix

Medieninhaber: Verband der Chemielehrer/innen Österreichs VCÖ

Dürnbergerstraße 71 | 5164 Seeham/Salzburg, Österreich |

Fax: +43 6217 7598 4 E-Mail: office@vcoe.or.at web: www.vcoe.or.at

VCÖ-SHOP: http://www.vcoe.or.at/shop/index.php | Tel: +43 6217-7598-1 | office@vcoe.or.at

Schutzbrillen für Kinder, Pipetten sowie sonstiges Kleinmaterial